Abstract
High-tech augmentative and alternative communication (AAC) methods are on a constant rise; however, the interaction between the user and the assistive technology is still challenged for an optimal user experience centered around the desired activity. This review presents a range of signal sensing and acquisition methods utilized in conjunction with the existing high-tech AAC platforms for individuals with a speech disability, including imaging methods, touch-enabled systems, mechanical and electro-mechanical access, breath-activated methods, and brain–computer interfaces (BCI). The listed AAC sensing modalities are compared in terms of ease of access, affordability, complexity, portability, and typical conversational speeds. A revelation of the associated AAC signal processing, encoding, and retrieval highlights the roles of machine learning (ML) and deep learning (DL) in the development of intelligent AAC solutions. The demands and the affordability of most systems hinder the scale of usage of high-tech AAC. Further research is indeed needed for the development of intelligent AAC applications reducing the associated costs and enhancing the portability of the solutions for a real user’s environment. The consolidation of natural language processing with current solutions also needs to be further explored for the amelioration of the conversational speeds. The recommendations for prospective advances in coming high-tech AAC are addressed in terms of developments to support mobile health communicative applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference112 articles.
1. Mobile Interaction for Augmentative and Alternative Communication: A Systematic Mapping;Schultz Ascari;SBC J. Interact. Syst.,2018
2. Assistive Technologies Principles and Practices;Cook,2015
3. Speech motor development: Integrating muscles, movements, and linguistic units
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献