Research on the Relationship between Resistivity and Resistance between Two Points on RCS Test Model

Author:

Wu YacongORCID,Huang Jun,Song LeiORCID

Abstract

Surface conductivity is one of the key factors in judging whether the RCS (Radar Cross Section) test model is qualified, but the accuracy of traditional detection methods is insufficient. Furthermore, the resistance between two points obtained by traditional methods cannot be directly applied to the electromagnetic simulation analysis of the test model. In this paper, the theoretical model of the relationship between resistivity and resistance between two points on the model surface is proposed. The simulation method for the resistance between two points on the model surface is established. The advantage of the method proposed in this paper compared with the traditional method in detecting the surface resistance of the model is demonstrated intuitively. The experiments are carried out on ITO (Indium Tin Oxide) conductive films with several dimensions and resistivity. Results show that the measured resistance between two points on the model surface is highly consistent with the theoretical and simulated values. Moreover, the comparison of experiments shows that the measurement error of the traditional method is 150% to 200% higher than that of the method proposed in this paper.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. 3D printing technologies in various applications;Ramya;Int. J. Mech. Eng. Technol.,2016

2. A cost-effective method for rapid manufacturing sheet metal forming dies;Kuo;Int. J. Adv. Manuf. Technol.,2016

3. Kumar, N., and Vadera, S.R. (2017). Aerospace Materials and Material Technologies, Springer.

4. Radar cross-section: Measurement, prediction and control;White;Electron. Commun. Eng. J.,1998

5. An overview on 3D printing technology: Technological, materials, and applications;Shahrubudin;Procedia Manuf.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3