Sensorimotor Time Delay Estimation by EMG Signal Processing in People Living with Spinal Cord Injury

Author:

Shokouhyan Seyed Mohammadreza,Blandeau MathiasORCID,Wallard Laura,Guerra Thierry Marie,Pudlo Philippe,Gagnon Dany H.,Barbier FranckORCID

Abstract

Neuro mechanical time delay is inevitable in the sensorimotor control of the body due to sensory, transmission, signal processing and muscle activation delays. In essence, time delay reduces stabilization efficiency, leading to system instability (e.g., falls). For this reason, estimation of time delay in patients such as people living with spinal cord injury (SCI) can help therapists and biomechanics to design more appropriate exercise or assistive technologies in the rehabilitation procedure. In this study, we aim to estimate the muscle onset activation in SCI people by four strategies on EMG data. Seven complete SCI individuals participated in this study, and they maintained their stability during seated balance after a mechanical perturbation exerting at the level of the third thoracic vertebra between the scapulas. EMG activity of eight upper limb muscles were recorded during the stability. Two strategies based on the simple filtering (first strategy) approach and TKEO technique (second strategy) in the time domain and two other approaches of cepstral analysis (third strategy) and power spectrum (fourth strategy) in the time–frequency domain were performed in order to estimate the muscle onset. The results demonstrated that the TKEO technique could efficiently remove the electrocardiogram (ECG) and motion artifacts compared with the simple classical filtering approach. However, the first and second strategies failed to find muscle onset in several trials, which shows the weakness of these two strategies. The time–frequency techniques (cepstral analysis and power spectrum) estimated longer activation onset compared with the other two strategies in the time domain, which we associate with lower-frequency movement in the maintaining of sitting stability. In addition, no correlation was found for the muscle activation sequence nor for the estimated delay value, which is most likely caused by motion redundancy and different stabilization strategies in each participant. The estimated time delay can be used in developing a sensory motor control model of the body. It not only can help therapists and biomechanics to understand the underlying mechanisms of body, but also can be useful in developing assistive technologies based on their stability mechanism.

Funder

Zodiac Seats France

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3