Thermal Regeneration of Activated Carbon Used as an Adsorbent for Hydrogen Sulfide (H2S)

Author:

Bunker Brendan1,Dvorak Bruce1ORCID,Aly Hassan Ashraf2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

2. Civil and Environmental Engineering Department and National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates

Abstract

The treatment of gaseous contaminants, such as hydrogen sulfide (H2S), is often carried out with adsorbent materials that are disposed of after saturation. The reuse of such materials promotes sustainability and the reduction in unnecessary waste. Granular activated carbon (GAC) is a well-known adsorbent used to capture gaseous H2S which can be reused. It is hypothesized that it can also concentrate contaminants for future treatment, thereby reducing secondary treatment costs. Cyclic adsorption/desorption experiments were completed with samples of GAC to investigate the feasibility of implementing the concept of repeated H2S adsorption/desorption in the construction of a pilot odor control device. A column filled with GAC was exposed to a stream of H2S gas and then heated to 500 °C to regenerate the carbon. The concentration of H2S at the inlet and outlet of the column was measured at regular intervals. Three samples of GAC had an average adsorption efficiency of 82% over the course of three cycles and were regenerated to 70% of initial adsorptive capacity after one cycle, and 60% after two cycles. These results indicate that after being saturated with H2S, GAC can be regenerated at high temperatures, evidence that H2S may become concentrated during the process. Additional characterization experiments confirmed that the sulfur content of the carbon increased after adsorption and decreased after thermal regeneration. The procedures demonstrated in this experiment were further utilized with a pilot device designed to provide a low-cost method for reducing odors in landfill gas.

Funder

Nebraska Environmental Trust

National Water and Energy Center at United Arab Emirates University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3