Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction

Author:

Loyola-González OctavioORCID,Ferreira Mehnert Emilio FranciscoORCID,Morales AythamiORCID,Fierrez JulianORCID,Medina-Pérez Miguel AngelORCID,Monroy RaúlORCID

Abstract

We study the impact of minutiae errors in the performance of latent fingerprint identification systems. We perform several experiments in which we remove ground-truth minutiae from latent fingerprints and evaluate the effects on matching score and rank-n identification using two different matchers and the popular NIST SD27 dataset. We observe how missing even one minutia from a fingerprint can have a significant negative impact on the identification performance. Our experimental results show that a fingerprint which has a top rank can be demoted to a bottom rank when two or more minutiae are missed. From our experimental results, we have noticed that some minutiae are more critical than others to correctly identify a latent fingerprint. Based on this finding, we have created a dataset to train several machine learning models trying to predict the impact of each minutia in the matching score of a fingerprint identification system. Finally, our best-trained model can successfully predict if a minutia will increase or decrease the matching score of a latent fingerprint.

Funder

National Council of Science and Technology of Mexico

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel indexing algorithm for latent palmprints leveraging minutiae and orientation field;Intelligent Systems with Applications;2024-03

2. The invisible 800-pound gorilla: expertise can increase inattentional blindness;Cognitive Research: Principles and Implications;2023-05-29

3. Synthetic Latent Fingerprint Generator;2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2023-01

4. Hybrid framework for identifying partial latent fingerprints using minutiae points and pores;Multimedia Tools and Applications;2022-01-06

5. Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Explaining Biases in Machine Learning;Computers;2021-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3