Short-Term Solar Power Forecasting Using Genetic Algorithms: An Application Using South African Data

Author:

Ratshilengo MamphagaORCID,Sigauke CastonORCID,Bere AlphonceORCID

Abstract

Renewable energy forecasts are critical to renewable energy grids and backup plans, operational plans, and short-term power purchases. This paper focused on short-term forecasting of high-frequency global horizontal irradiance data from one of South Africa’s radiometric stations. The aim of the study was to compare the predictive performance of the genetic algorithm and recurrent neural network models with the K-nearest neighbour model, which was used as the benchmark model. Empirical results from the study showed that the genetic algorithm model has the best conditional predictive ability compared to the other two models, making this study a useful tool for decision-makers and system operators in power utility companies. To the best of our knowledge this is the first study which compares the genetic algorithm, the K-nearest neighbour method, and recurrent neural networks in short-term forecasting of global horizontal irradiance data from South Africa.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3