Using Formal Grammars as Musical Genome

Author:

Albarracín-Molina David D.ORCID,Raglio AlfredoORCID,Rivas-Ruiz FranciscoORCID,Vico Francisco J.

Abstract

In this paper, we explore a generative music method that can compose atonal and tonal music in different styles. One of the main differences between regular engineering problems and artistic expressions is that goals and constraints are usually ill-defined in the latter case; in fact the rules here could or should be transgressed more regularly. For this reason, our approach does not use a pre-existing dataset to imitate or extract rules from. Instead, it uses formal grammars as a representation method than can retain just the basic features, common to any form of music (e.g., the appearance of rhythmic patterns, the evolution of tone or dynamics during the composition, etc.). Exploring different musical spaces is the responsibility of a program interface that translates musical specifications into the fitness function of a genetic algorithm. This function guides the evolution of those basic features enabling the emergence of novel content. In this study, we then assess the outcome of a particular music specification (guitar ballad) in a controlled real-world setup. As a result, the generated music can be considered similar to human-composed music from a perceptual perspective. This endorses our approach to tackle arts algorithmically, as it is able to produce novel content that complies with human expectations.

Funder

Ministerio de Economía y Competitividad

Ministerio de Industria, Energía y Turismo

Junta de Andalucía

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Generative Models;Handbook of Evolutionary Machine Learning;2023-11-02

2. Special Issue: Generative Models in Artificial Intelligence and Their Applications;Applied Sciences;2022-04-20

3. Real-Time Evolutionary Music Composition Using JFUGUE and Genetic Algorithm;2021 IEEE 19th Student Conference on Research and Development (SCOReD);2021-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3