A Low-Cost System for Measuring Wind Speed and Direction Using Thermopile Array and Artificial Neural Network

Author:

Wu Shang-Chen,Tzou Jong-Chyuan,Ding Cheng-Yu

Abstract

Recent developments in wind speed sensors have mainly focused on reducing the size and moving parts to increase reliability and stability. In this study, the development of a low-cost wind speed and direction measurement system is presented. A heat sink mounted on a self-regulating heater is used as means to interact with the wind changes and a thermopile array mounted atop of the heat sink is used to collect temperature data. The temperature data collected from the thermopile array are used to estimate corresponding wind speed and direction data using an artificial neural network. The multilayer artificial neural network is trained using 96 h data and tested on 72 h data collected in an outdoor setting. The performance of the proposed model is compared with linear regression and support vector machine. The test results verify that the proposed system can estimate wind speed and direction measurements with a high accuracy at different sampling intervals, and the artificial neural network can provide significantly a higher coefficient of determination than two other methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3