Abstract
Degradation models are commonly used to describe the generation of combustible gases when predicting fire behavior. A model may include many sub-models, such as heat and mass transfer models, pyrolysis models or mechanical models. The pyrolysis sub-models require the definition of a decomposition mechanism and the associated reaction rates. Arrhenius-type equations are commonly used to quantify the reaction rates. Arrhenius-type equations allow the representation of chemical decomposition as a function of temperature. This representation of the reaction rate originated from the study of gas-phase reactions, but it has been extrapolated to liquid and solid decomposition. Its extension to solid degradation needs to be justified because using an Arrhenius-type formulation implies important simplifications that are potentially questionable. This study describes these simplifications and their potential consequences when it comes to the quantification of solid-phase reaction rates. Furthermore, a critical analysis of the existing thermal degradation models is presented to evaluate the implications of using an Arrhenius-type equation to quantify mass-loss rates and gaseous fuel production for fire predictions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference70 articles.
1. Scaling-Up fire
2. An Introduction to Fire Dynamics;Drysdale,2011
3. Fundamentals of Fire Phenomena;Quintiere,2006
4. Flaming Ignition of Solid Fuels;Torero,2016
5. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献