Non-Real-Time Wireless System for Lightning Effect Measurements

Author:

Kossowski Tomasz,Matuszewski ŁukaszORCID

Abstract

This article presents the results of experimental tests of a measuring system dedicated to the study of lightning phenomena. A wireless non-real-time communication arrangement was used as a prototype to protect the system by overvoltage and electromagnetic noise generated by high-current pulses. All data were collected after analog-to-digital conversion in the RAM of the measuring probe and then transmitted to the recorder after the surge current disappeared. The current generator creates electromagnetic disturbances resulting from its work and those arising from the impulse generated at the output. The wireless measuring system ensures safe operation and avoids measurement disturbances by resigning from the physical connection of the probe and the recorder. The proposed solution enables simultaneous (synchronous) measurement at many points, regardless of the location (for convenient change of the measurement site without cables or optical fibers). Long battery life allows measurements in the laboratory or on the test site without a power source. High accuracy of the measured signal value was obtained thanks to the 16 bit resolution, and the device parameters can be remotely modified. The wireless connection guarantees the safety of people and equipment throughout the laboratory.

Funder

Minister of Science and Higher Education of the Republic of Poland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Electromagnetic emission of devices in practice;Bogucki;Telekomun. Tech. Inf.,2007

2. Układ probierczo-pomiarowy do poligonowych badań narażeń piorunowych;Masłowski;Prz. Elektrotech.,2012

3. Comprehensive electrical loss analysis of monolithic interconnected multi-segment laser power converters

4. Characterization of lightning return stroke electric and magnetic fields from simultaneous two-station measurements

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3