Abstract
This article presents the results of experimental tests of a measuring system dedicated to the study of lightning phenomena. A wireless non-real-time communication arrangement was used as a prototype to protect the system by overvoltage and electromagnetic noise generated by high-current pulses. All data were collected after analog-to-digital conversion in the RAM of the measuring probe and then transmitted to the recorder after the surge current disappeared. The current generator creates electromagnetic disturbances resulting from its work and those arising from the impulse generated at the output. The wireless measuring system ensures safe operation and avoids measurement disturbances by resigning from the physical connection of the probe and the recorder. The proposed solution enables simultaneous (synchronous) measurement at many points, regardless of the location (for convenient change of the measurement site without cables or optical fibers). Long battery life allows measurements in the laboratory or on the test site without a power source. High accuracy of the measured signal value was obtained thanks to the 16 bit resolution, and the device parameters can be remotely modified. The wireless connection guarantees the safety of people and equipment throughout the laboratory.
Funder
Minister of Science and Higher Education of the Republic of Poland
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献