Estimation of Structural Deformed Configuration for Bridges Using Multi-Response Measurement Data

Author:

Byun NamjuORCID,Lee JeonghwaORCID,Lee Keesei,Kang Young-JongORCID

Abstract

The structural deformed shape (SDS) is considered an important factor for evaluating structural conditions owing to its direct relationship with structural stiffness. Recently, an SDS estimation method based on displacement data from a limited number of data points was developed. Although the method showed good performance with a sufficient number of measured data points, application of the SDS estimation method for on-site structures has been quite limited because collecting sufficient displacement data measured from a Global Navigation Satellite System (GNSS) can be quite expensive. Thus, the development of an affordable SDS estimation method with a certain level of accuracy is essential for field application of the SDS estimation technique. This paper proposes an improved SDS estimation method using displacement data combined with additional slope and strain data that can improve the accuracy of the SDS estimation method and reduce the required number of GNSSs. The estimation algorithm was established based on shape superposition with various combined response data (displacement, slope, and strain) and the least-squares method. The proposed SDS estimation method was verified using a finite element method model. In the validation process, three important issues that may affect the estimation accuracy were analyzed: effect of shape function type, sensor placement method, and effectiveness of using multi-response data. Then, the improved SDS estimation method developed in this study was compared with existing SDS estimation methods from the literature. Consequently, it was found that the proposed method can reduce the number of displacement data required to estimate rational SDS by using additional slope and strain data. It is expected that cost-effective structural health monitoring (SHM) can be established using the proposed estimation method.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3