Development and Prospect of UAV-Based Aerial Electrostatic Spray Technology in China

Author:

Zhang YaliORCID,Huang Xinrong,Lan Yubin,Wang Linlin,Lu Xiaoyang,Yan Kangting,Deng Jizhong,Zeng Wen

Abstract

Aerial electrostatic spray technology for agriculture is the integration of precision agricultural aviation and electrostatic spray technology. It is one of the research topics that have been paid close attention to by scholars in the field of agricultural aviation. This study summarizes the development of airborne electrostatic spray technology for agricultural use in China, including the early research and exploration of Chinese institutions and researchers in the aspects of nozzle structure design optimization and theoretical simulation. The research progress of UAV-based aerial electrostatic spray technology for agricultural use in China was expounded from the aspects of nozzle modification, technical feasibility study, influencing mechanism of various factors, and field efficiency tests. According to the current development of agricultural UAVs and the characteristics of the farmland environment in China, the UAV-based aerial electrostatic spray technology, which carries the airborne electrostatic spray system on the plant protection UAVs, has a wide potential in the future. At present, the application of UAV-based aerial electrostatic spray technology has yet to be further improved due to several factors, such as the optimization of the test technology for charged droplets, the impact of UAV rotor wind field, comparison study on charging modes, and the lack of technical accumulation in the research of aerial electrostatic spray technology. With the continuous improvement of the research system of agricultural aviation electrostatic spray technology, UAV-based electrostatic spray technology will give play to the advantages in increasing the droplets deposition on the target and reducing environmental pollution from the application of pesticides. This study is capable of providing a reference for the development of the UAV-based agricultural electrostatic spray technology and the spray equipment.

Funder

Key Field Research and Development Plan of Guangdong Province, China

National Key Research and Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3