Stochastic Predictions of Ore Production in an Underground Limestone Mine Using Different Probability Density Functions: A Comparative Study Using Big Data from ICT System

Author:

Jung DaheeORCID,Baek JieunORCID,Choi YosoonORCID

Abstract

This study stochastically predicted ore production through discrete event simulation using four different probability density functions for truck travel times. An underground limestone mine was selected as the study area. The truck travel time was measured by analyzing the big data acquired from information and communications technology (ICT) systems in October 2018, and probability density functions (uniform, triangular, normal, and observed probability distribution of real data) were determined using statistical values. A discrete event simulation model for a truck haulage system was designed, and truck travel times were randomly generated using a Monte Carlo simulation. The ore production that stochastically predicted fifty times for each probability density function was analyzed and represented as a value of lower 10% (P10), 50% (P50), and 90% (P90). Ore production was underestimated when a uniform and triangular distribution was used, as the actual ore production was similar to that of P90. Conversely, the predicted ore production of P50 was relatively consistent with the actual ore production when using the normal and observed probability distribution of real data. The root mean squared error (RMSE) for predicting ore production for ten days in October 2018 was the lowest (24.9 ton/day) when using the observed probability distribution.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3