A Novel MRA-Based Framework for Segmenting the Cerebrovascular System and Correlating Cerebral Vascular Changes to Mean Arterial Pressure

Author:

Taher FatmaORCID,Kandil Heba,Gebru Yitzhak,Mahmoud AliORCID,Shalaby AhmedORCID,El-Mashad ShadyORCID,El-Baz AymanORCID

Abstract

Blood pressure (BP) changes with age are widespread, and systemic high blood pressure (HBP) is a serious factor in developing strokes and cognitive impairment. A non-invasive methodology to detect changes in human brain’s vasculature using Magnetic Resonance Angiography (MRA) data and correlation of cerebrovascular changes to mean arterial pressure (MAP) is presented. MRA data and systemic blood pressure measurements were gathered from patients (n = 15, M = 8, F = 7, Age = 49.2 ± 7.3 years) over 700 days (an initial visit and then a follow-up period of 2 years with a final visit.). A novel segmentation algorithm was developed to delineate brain blood vessels from surrounding tissue. Vascular probability distribution function (PDF) was calculated from segmentation data to correlate the temporal changes in cerebral vasculature to MAP calculated from systemic BP measurements. A 3D reconstruction of the cerebral vasculature was performed using a growing tree model. Segmentation results recorded 99.9% specificity and 99.7% sensitivity in identifying and delineating the brain’s vascular tree. The PDFs had a statistically significant correlation to MAP changes below the circle of Willis (p-value = 0.0007). This non-invasive methodology could be used to detect alterations in the cerebrovascular system by analyzing MRA images, which would assist clinicians in optimizing medical treatment plans of HBP.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of artificial intelligence and radiomics in diagnosing renal tumors: a survey;State of the Art in Neural Networks and Their Applications;2023

2. Left ventricle segmentation and quantification using deep learning;Cardiovascular and Coronary Artery Imaging;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3