An Updated Method for Stability Analysis of Milling Process with Multiple and Distributed Time Delays and Its Application

Author:

Jin GangORCID,Li Wenshuo,Han JianxinORCID,Li Zhanjie,Hu Gaofeng,Sun Guangxing

Abstract

Predicting and avoiding the onset of milling chatter are desirable to reduce its harm to machine tools, workpieces, and cutters. This paper presents an updated method to complete the stability prediction for the milling process with multiple and distributed time delays. After the dynamic of the combination milling process with variable helix cutter (VHC) and variable spindle speed (VSS) is modeled as linear delay differential equations with multiple and distributed time delays, the presented method is applied to carrying out its stability prediction for the first time. By comparing with the existing researches and time-domain simulations, the effectiveness of the presented method has been validated. The influence and feasibility of the combination process on chatter suppression are explored and investigated for the associated one- and two-degree-of-freedom systems. Results show that the application of the combination process can realize a further suppression of milling chatter in practice. It can result in nearly 2-fold as high as the minimum depth of cut for the traditional milling or VSS milling and about 1.3-fold for VHC milling for some special domain, and can respectively lead to the average increase of stable area by 30.4%, 23.5%, and 1.5% for the adopted simulations. However, consider the contribution, the combination process is actually one process in which VHC plays an absolutely leading role but VSS plays an auxiliary role, in terms of milling stability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Theory of regenerative machine tool chatter;Tobias;Engineer,1958

2. The stability of machine tools against self-excited vibrations in machining;Tlusty;Int. Res. Prod. Eng.,1963

3. Analytical Prediction of Stability Lobes in Milling

4. Multi Frequency Solution of Chatter Stability for Low Immersion Milling

5. Stability of Interrupted Cutting by Temporal Finite Element Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3