EGR2, IGF1 and IL6 Expression Are Elevated in the Intervertebral Disc of Patients Suffering from Diffuse Idiopathic Skeletal Hyperostosis (DISH) Compared to Degenerative or Trauma Discs

Author:

Gantenbein BenjaminORCID,May Rahel D.ORCID,Bermudez-Lekerika PaolaORCID,Oswald Katharina A. C.ORCID,Benneker Lorin M.ORCID,Albers Christoph E.ORCID

Abstract

Diffuse idiopathic skeletal hyperostosis (DISH) is characterised by ectopic ossification along the anterior spine and the outer intervertebral discs (IVD). However, the centre of the IVD, i.e., the nucleus pulposus, always remains unaffected, which could be due to the inhibition of the bone morphogenetic protein (BMP) pathway. In this study, we investigated the transcriptome for the BMP pathway of DISH-IVD cells versus disc cells of traumatic or degenerative discs. The disc cells originated from nucleus pulposus (NP), annulus fibrosus (AF) and from cartilaginous endplate (CEP) tissue. Here, ninety genes of the transforming growth factor β-BMP signalling pathway were screened by qPCR. Furthermore, the protein expression of genes of interest was further investigated by immune-staining and semi-quantitative microscopy. IVDs of three DISH patients were tested against three control patients (same disc level and similar age). Early Growth Response 2 (EGR2) and Interleukin 6 (IL6) were both significantly up-regulated in DISH-IVD cells compared to controls (12.8 ± 7.6-fold and 54.0 ± 46.5-fold, respectively, means ± SEM). Furthermore, Insulin-like Growth Factor 1 (IGF1) tended to be up-regulated in DISH-IVD donors, i.e., 174.13 ± 120.6-fold. IGF1 was already known as a serum marker for DISH and other rheumatoid diseases and is confirmed here to play a possible key role in DISH-IVD.

Funder

H2020 Marie Skłodowska-Curie Actions

Clinical trials unit (CTU) of Bern University Hospital

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3