Abstract
Channels manufactured by laser powder bed fusion have an inherent process-induced dross formation and surface texture that require proper characterization for design and process optimization. This work undertakes surface texture characterization of AlSi10Mg channels of nominal diameter sizes ranging from 1 mm to 9 mm using X-ray computed tomography. Profile parameters, including Pa, Pz, and Pq, were found to be interchangeable for qualitative characterization of surface texture variation. Psk, Pvv, and the fractal dimension could identify the presence of extreme dross and sintered particles on the measured profiles. A method for predicting the equivalent diameter of the unobstructed cross-sectional area (Deq) was presented and its reduction was found to follow a logarithmic trend, as a function of channel length. An empirical model Pa (β, D), as a function of local angular position (β) and channel diameter (D), was demonstrated on a perfect channel geometry, resulting in well-predicted roughness and internal geometry.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献