Multichannel Real-Time Electronics Platform for the Estimation of the Error in Impact Localization with Different Piezoelectric Sensor Densities

Author:

Capineri LorenzoORCID,Bulletti AndreaORCID,Marino Merlo Eugenio

Abstract

The work presents a structural health monitoring (SHM) electronic system with real-time acquisition and processing for the determination of impact location in laminate. The novelty of this work is the quantitative evaluation of impact location errors using the Lamb wave guided mode S0, captured and processed in real-time by up to eight piezoelectric sensors. The differential time of arrival is used to minimize an error function for the position estimation. The impact energy is correlated to the amplitudes of the antisymmetric (A0) mode and the electronic design is described to avoid saturation for signal acquisition. The same electronic system is designed to acquire symmetric (S0) low level signals by adequate gain, bandwidth, and signal-to-noise ratio. Such signals propagate into a 1.4 mm thick aluminum laminate at the group velocity of 5150 m/s with frequency components above 270 kHz, and can be discriminated from the A0 mode to calculate accurately the differential arrival time. The results show that the localization error stabilizes at a value comparable with the wavelength of the S0 mode by increasing the number of sensors up to six, and then remains constant at up to eight sensors. This suggests that a compromise can be found between sensor density and localization error.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Structural Health Monitoring: With Piezoelectric Wafer Active Sensors;Giurgiutiu,2014

2. Ultrasonic Guided Waves in Solid Media;Rose,2014

3. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method;Ostachowicz,2012

4. Damage Detection in Thin Composite Laminates Using Piezoelectric Phased Sensor Arrays and Guided Lamb Wave Interrogation

5. Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3