Abstract
Experimental research on axially compressed columns made from reinforced concrete (RC) and RC columns strengthened with a steel jacket and additional fill concrete is presented in this paper. A premade squared cross-section RC column was placed inside a steel tube, and then the space between the column and the tube was filled with additional concrete. A total of fourteen stub axially compressed columns, including nine strengthened specimens and five plain reinforced concrete specimens, were experimentally tested. The main parameter that was varied in the experiment was the compressive strength of the filler concrete. Three different concrete compression strength classes were used. Test results showed that all three cross-section parts (the core column, the fill, and the steel jacket) worked together in the force-carrying process through all load levels, even if only the basic RC column was loaded. The strengthened columns exhibited pronounced ductile behavior compared to the plain RC columns. The influence of the test parameters on the axial compressive strength was investigated. In addition, the specimen failure modes, strain development, and load vs. deformation relations were registered. The applicability of three different design codes to predict the axial bearing capacity of the strengthened columns was also investigated.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献