X-ray Phase-Contrast Computed Tomography for Soft Tissue Imaging at the Imaging and Medical Beamline (IMBL) of the Australian Synchrotron

Author:

Arhatari Benedicta D.ORCID,Stevenson Andrew W.ORCID,Abbey BrianORCID,Nesterets Yakov I.,Maksimenko Anton,Hall Christopher J.,Thompson DarrenORCID,Mayo Sheridan C.,Fiala Tom,Quiney Harry M.,Taba Seyedamir T.,Lewis Sarah J.,Brennan Patrick C.,Dimmock MatthewORCID,Häusermann Daniel,Gureyev Timur E.

Abstract

The Imaging and Medical Beamline (IMBL) is a superconducting multipole wiggler-based beamline at the 3 GeV Australian Synchrotron operated by the Australian Nuclear Science and Technology Organisation (ANSTO). The beamline delivers hard X-rays in the 25–120 keV energy range and offers the potential for a range of biomedical X-ray applications, including radiotherapy and medical imaging experiments. One of the imaging modalities available at IMBL is propagation-based X-ray phase-contrast computed tomography (PCT). PCT produces superior results when imaging low-density materials such as soft tissue (e.g., breast mastectomies) and has the potential to be developed into a valuable medical imaging tool. We anticipate that PCT will be utilized for medical breast imaging in the near future with the advantage that it could provide better contrast than conventional X-ray absorption imaging. The unique properties of synchrotron X-ray sources such as high coherence, energy tunability, and high brightness are particularly well-suited for generating PCT data using very short exposure times on the order of less than 1 min. The coherence of synchrotron radiation allows for phase-contrast imaging with superior sensitivity to small differences in soft-tissue density. Here we also compare the results of PCT using two different detectors, as these unique source characteristics need to be complemented with a highly efficient detector. Moreover, the application of phase retrieval for PCT image reconstruction enables the use of noisier images, potentially significantly reducing the total dose received by patients during acquisition. This work is part of ongoing research into innovative tomographic methods aimed at the introduction of 3D X-ray medical imaging at the IMBL to improve the detection and diagnosis of breast cancer. Major progress in this area at the IMBL includes the characterization of a large number of mastectomy samples, both normal and cancerous, which have been scanned at clinically acceptable radiation dose levels and evaluated by expert radiologists with respect to both image quality and cancer diagnosis.

Funder

National Health and Medical Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3