Imaging Top of Volcanic Mounds Using Seismic Time- and Depth-Domain Data Processing

Author:

Son Woohyun,Cheong SnonsORCID,Lee ChangyoonORCID,Kang Moohee

Abstract

A seismic survey identified a basalt flow that could consist of cap rock of CO2 storage beneath saline aquifer sediment in the Southern Continental Shelf of Korea. To determine the precise depth of the basalt flow, specific depth-domain data processing of migration velocity analysis (MVA) was applied to the seismic survey data. The accurate depth measurement of a target structure provides crucial information when storing and stabilizing injected CO2 beneath basalt cap rock. Strong reflections of seismic amplitude at the volcanic mounds were adjusted from the time domain to the exact depth domain by the iterated velocity using MVA. The confidence of the updated velocity was verified by the horizontal alignment of seismic events sorted according to their common reflection point (CRP). The depth difference in volcanic mounds before and after MVA application ranged from 32.5 to 60 m along the vertical axis, showing the eruption shape on the strong-amplitude contour map in detail. The eruption shape of the top of volcanic mounds was verified with spatial continuity in 3D geological interpretation. The presented results provide suitable information that can be used to locate drilling sites and to prepare CO2 injection. The geological model obtained from both time- and depth-domain processing can significantly influence the calculation of the storage volume and can be useful for history matching studies.

Funder

Korea Institute of Geosciences and Mineral Resources

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Interpreting subsurface volcanic structures using geologically constrained 3‐D gravity inversions: Examples of maar‐diatremes, Newer Volcanics Province, southeastern Australia

2. Buried volcanic structures in the Gulf of Naples (Southern Tyrrhenian Sea, Italy) resulting from high resolution magnetic survey and seismic profiling;Aiello;Ann. Geophys.,2005

3. Geophysical imaging of subsurface structures in volcanic area by seismic attenuation profiling

4. Identification of paleo-volcanic rocks on seismic data;Klamer,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3