Aerodynamic Characteristics of Coupled Twin Circular Bridge Hangers with Near Wake Interference

Author:

Wang ChaoqunORCID,Hua XugangORCID,Huang Zhiwen,Wen Qing

Abstract

Much work has been devoted to the investigation and understanding of the flow-induced vibrations of twin cylinders vibrating individually (e.g., vortex-induced vibration and wake-induced galloping), but little has been devoted to coupled twin cylinders with synchronous galloping. The primary objective of this work is to investigate the aerodynamic forcing characteristics of coupled twin cylinders in cross flow and explore their effects on synchronous galloping. Pressure measurements were performed on a stationary section model of twin cylinders with various cylinder center-to-center distances from 2.5 to 11 diameters. Pressure distributions, reduced frequencies and total aerodynamic forces of the cylinders are analyzed. The results show that the flow around twin cylinders shows two typical patterns with different spacing, and the critical spacing for the two patterns at wind incidence angles of 0° and 9° is in the range of 3.8D~4.3D and 3.5D~3.8D, respectively. For cylinder spacings below the critical value, vortex shedding of the upstream cylinder is suppressed by the downstream cylinder. In particular, at wind incidence angles of 9°, the wake flow of the upstream cylinder flows rapidly near the top edge and impacts on the inlet edge of the downstream cylinder, which causes a negative and positive pressure region, respectively. As a result, the total lift force of twin cylinders comes to a peak while the total drag force jumps to a higher value. Moreover, there is a sharp drop of total lift coefficient for α = 9–12°, indicating the potential galloping instability. Finally, numerical simulations were performed for the visualization of the two flow patterns.

Funder

National Science Foundation for Distinguished Young Scholars of China

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. Cable Supported Bridges: Concept and Design;Gimsing,2011

2. Multi-mode flutter and buffeting analysis of the Akashi-Kaikyo bridge

3. Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt

4. Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge;Hua;Smart Struct. Syst.,2019

5. Wind tunnel and analytical investigations into the aeroelastic behaviour of bundled conductors

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3