Effectiveness of Silicon Platelet-Rich Fibrin and Autologous Bone on Bone Regeneration in Rabbit Calvarian Defects: A Radiological and Histological Study

Author:

Hernández-Suarez Argimiro,Rizo-Gorrita MaríaORCID,Suárez-Vega Dubraska,Velazco GladysORCID,Rodriguez Gelfenstein Ivan,Vázquez-Pachón Celia,Serrera-Figallo María-Ángeles,Torres-Lagares DanielORCID

Abstract

Repairing bone defects in oral surgery often requires the use of bone regeneration techniques. Silicon is an element that has been employed as regeneration material in several studies. In our study, silicon was combined with autologous bone and platelet-rich fibrin (PRF) membranes to analyse the behaviour of this element in bone regeneration. Four circumferential defects were created in the cranial vault of five New Zealand rabbits. The following elements were applied to the regeneration of the defects: (P): PRF; (S): silicon and (B): autologous bone, with the following distribution of study groups: Group 1 (PSB); Group 2 (PS); Group 3 (SB) and Group 4 (CONTROL): unregenerate group. The animals were sacrificed after 3 weeks. Computed microtomography studies (μ-CT) were carried out, as well as histomorphometric ones. The ANOVA statistical test was used with a Bonferroni post-hoc test to compare the results (p ≤ 0.05). Radiologically, groups PSB and SB were better as far as quantity and percentage of healthy bone observed, but not significantly compared to the control group. The PS group was significantly worse. The histological test revealed that the PSB group was the one to present the largest area, percentage and perimeter of mineralised bone. On evaluating the forming bone (osteoid), no difference was observed across the groups with the exception of the bone perimeter, where the SB group was significantly better. The bone height variable showed no significant differences. In conclusion we can state that the combination of PRF, autologous bone and silicon provides good results at 3 weeks whilst the PS group shows the worst results. This highlights the importance of autologous bone forming part of the graft material in order for the bone to mineralise.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3