SVM Performance for Predicting the Effect of Horizontal Screen Diameters on the Hydraulic Parameters of a Vertical Drop

Author:

Daneshfaraz RasoulORCID,Aminvash EhsanORCID,Ghaderi AmirORCID,Abraham JohnORCID,Bagherzadeh MohammadORCID

Abstract

The present study investigated the application of support vector machine algorithms for predicting hydraulic parameters of a vertical drop equipped with horizontal screens. The study incorporated varying sizes of a rectangular channel. Horizontal screens, in addition to being able to dissipate the destructive energy of the flow, cause turbulence. The turbulence in turn supplies oxygen to the system through the promotion of air–water mixing. To achieve the objectives of the present study, 164 experiments were analyzed under the same experimental conditions using a support vector machine. The approach utilized dimensionless terms that included scenario 1: the relative energy consumption and scenario 2: the relative pool depth. The performance of the models was evaluated with statistical criteria (RMSE, R2 and KGE) and the best model was introduced for each of the parameters. RMSE is the root mean square error, R2 is the correlation coefficient and KGE is the Kling–Gupta criterion. The results of the support vector machine showed that for the first scenario, the third combination with R2 = 0.991, RMSE = 0.00565 and KGE = 0.998 for the training mode and R2 = 0.991, RMSE = 0.00489 and KGE = 0.991 for the testing mode were optimal. For the second scenario, the third combination with R2 = 0.988, RMSE = 0.0395 and KGE = 0.998 for the training mode and R2 = 0.988, RMSE = 0.0389 and KGE = 0.993 for the testing mode were selected. Finally, a sensitivity analysis was performed that showed that the yc/H and D/H parameters are the most effective parameters for predicting relative energy dissipation and relative pool depth, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3