Finite-Size Relaxational Dynamics of a Spike Random Matrix Spherical Model

Author:

de Freitas Pimenta Pedro H.1ORCID,Stariolo Daniel A.2ORCID

Affiliation:

1. Departamento de Física, Universidade Federal Fluminense, Niterói 24210-346, RJ, Brazil

2. Departamento de Física, National Institute of Science and Technology for Complex Systems, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Litorânea s/n, Niterói 24210-346, RJ, Brazil

Abstract

We present a thorough numerical analysis of the relaxational dynamics of the Sherrington–Kirkpatrick spherical model with an additive non-disordered perturbation for large but finite sizes N. In the thermodynamic limit and at low temperatures, the perturbation is responsible for a phase transition from a spin glass to a ferromagnetic phase. We show that finite-size effects induce the appearance of a distinctive slow regime in the relaxation dynamics, the extension of which depends on the size of the system and also on the strength of the non-disordered perturbation. The long time dynamics are characterized by the two largest eigenvalues of a spike random matrix which defines the model, and particularly by the statistics concerning the gap between them. We characterize the finite-size statistics of the two largest eigenvalues of the spike random matrices in the different regimes, sub-critical, critical, and super-critical, confirming some known results and anticipating others, even in the less studied critical regime. We also numerically characterize the finite-size statistics of the gap, which we hope may encourage analytical work which is lacking. Finally, we compute the finite-size scaling of the long time relaxation of the energy, showing the existence of power laws with exponents that depend on the strength of the non-disordered perturbation in a way that is governed by the finite-size statistics of the gap.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro

CNPq

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3