Efficient and Automatic Breast Cancer Early Diagnosis System Based on the Hierarchical Extreme Learning Machine

Author:

Lyu Songyang1ORCID,Cheung Ray C. C.1ORCID

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong, Hong Kong

Abstract

Breast cancer is the leading type of cancer in women, causing nearly 600,000 deaths every year, globally. Although the tumors can be localized within the breast, they can spread to other body parts, causing more harm. Therefore, early diagnosis can help reduce the risks of this cancer. However, a breast cancer diagnosis is complicated, requiring biopsy by various methods, such as MRI, ultrasound, BI-RADS, or even needle aspiration and cytology with the suggestions of specialists. On certain occasions, such as body examinations of a large number of people, it is also a large workload to check the images. Therefore, in this work, we present an efficient and automatic diagnosis system based on the hierarchical extreme learning machine (H-ELM) for breast cancer ultrasound results with high efficiency and make a primary diagnosis of the images. To make it compatible to use, this system consists of PNG images and general medical software within the H-ELM framework, which is easily trained and applied. Furthermore, this system only requires ultrasound images on a small scale, of 28×28 pixels, reducing the resources and fulfilling the application with low-resolution images. The experimental results show that the system can achieve 86.13% in the classification of breast cancer based on ultrasound images from the public breast ultrasound images (BUSI) dataset, without other relative information and supervision, which is higher than the conventional deep learning methods on the same dataset. Moreover, the training time is highly reduced, to only 5.31 s, and consumes few resources. The experimental results indicate that this system could be helpful for precise and efficient early diagnosis of breast cancers with primary examination results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3