Super-Resolution Reconstruction of Speckle Images of Engineered Bamboo Based on an Attention-Dense Residual Network

Author:

Yu WeiORCID,Liu Zheng,Zhuang ZilongORCID,Liu Ying,Wang XuORCID,Yang YutuORCID,Gou Binli

Abstract

With the global population surge, the consumption of nonrenewable resources and pollution emissions have reached an alarming level. Engineered bamboo is widely used in construction, mechanical and electrical product packaging, and other industries. Its main damage is the material fracture caused by the expansion of initial cracks. In order to accurately detect the length of crack propagation, digital image correlation technology can be used for calculation. At present, the traditional interpolation method is still used in the reconstruction of engineered bamboo speckle images for digital correlation technology, and the performance is relatively lagging. Therefore, this paper proposes a super-resolution reconstruction method of engineering-bamboo speckle images based on an attention-dense residual network. In this study, the residual network is improved by removing the BN layer, using the L1 loss function, introducing the attention model, and designing an attention-intensive residual block. An image super-resolution model based on the attention-dense residual network is proposed. Finally, the objective evaluation indexes PSNR and SSIM and subjective evaluation index MOS were used to evaluate the performance of the model. The ADRN method was 29.19 dB, 0.938, and 3.19 points in PSNR, SSIM, and MOS values. Compared to the traditional BICUBIC B-spline interpolation method, the speckle images reconstructed by this model increased by 8.55 dB, 0.323, and 1.43 points, respectively. Compared to the SRResNet method, the speckle images reconstructed by this model were increased by 4.53 dB, 0.111, and 0.14 points, respectively. The reconstructed speckle images of engineered bamboo were clearer, and the image features were more obvious, which could better identify the tip crack position of the engineered bamboo. The results show that the super-resolution reconstruction effect of engineered-bamboo speckle images can be effectively improved by adding the attention mechanism to the residual network. This method has great application value.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3