Abstract
Tactile sensing has attracted significant attention as a tactile quantitative evaluation method because the tactile sensation is an important factor while evaluating consumer products. Although the human tactile perception mechanism has nonlinearity, previous studies have often developed linear regression models. In contrast, this study proposes a nonlinear tactile estimation model that can estimate sensory evaluation scores from physical measurements. We extracted features from the vibration data obtained by a tactile sensor based on the perceptibility of mechanoreceptors. In parallel, a sensory evaluation test was conducted using 10 evaluation words. Then, the relationship between the extracted features and the tactile evaluation results was modeled using linear/nonlinear regressions. The best model was concluded by comparing the mean squared error between the model predictions and the actual values. The results imply that there are multiple evaluation words suitable for adopting nonlinear regression models, and the average error was 43.8% smaller than that of building only linear regression models.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献