Linking In Situ Melt Pool Monitoring to Melt Pool Size Distributions and Internal Flaws in Laser Powder Bed Fusion

Author:

Schwerz ClaudiaORCID,Nyborg Lars

Abstract

In situ monitoring of the melt pools in laser powder bed fusion (LPBF) has enabled the elucidation of process phenomena. There has been an increasing interest in also using melt pool monitoring to identify process anomalies and control the quality of the manufactured parts. However, a better understanding of the variability of melt pools and the relation to the incidence of internal flaws are necessary to achieve this goal. This study aims to link distributions of melt pool dimensions to internal flaws and signal characteristics obtained from melt pool monitoring. A process mapping approach is employed in the manufacturing of Hastelloy X, comprising a vast portion of the process space. Ex situ measurements of melt pool dimensions and analysis of internal flaws are correlated to the signal obtained through in situ melt pool monitoring in the visible and near-infrared spectra. It is found that the variability in melt pool dimensions is related to the presence of internal flaws, but scatter in melt pool dimensions is not detectable by the monitoring system employed in this study. The signal intensities are proportional to melt pool dimensions, and the signal is increasingly dynamic following process conditions that increase the generation of spatter.

Funder

VINNOVA

European Commission

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3