Estimation of Fatigue Crack Growth Rate in Heat-Resistant Steel by Processing of Digital Images of Fracture Surfaces

Author:

Maruschak PavloORCID,Vorobel RomanORCID,Student OleksandraORCID,Ivasenko IrynaORCID,Krechkovska HalynaORCID,Berehulyak OlenaORCID,Mandziy Teodor,Svirska LesiaORCID,Prentkovskis OlegasORCID

Abstract

The micro- and macroscopic fatigue crack growth (FCG) rates of a wide class of structural materials were analyzed and it was concluded that both rates coincide either during high-temperature tests or at high stress intensity factor (SIF) values. Their coincidence requires a high level of cyclic deformation of the metal along the entire crack front as a necessary condition for the formation of fatigue striations (FS). Based on the analysis of digital fractographic images of the fatigue fracture surfaces, a method for the quantitative assessment of the spacing of FS has been developed. The method includes the detection of FS by binarization of the image based on the principle of local minima, rotation of the highlighted fragments of the image using the Hough transform, and the calculation of the distances between continuous lines. The method was tested on 34KhN3M steel in the initial state and after long-term operation (~3 × 105 h) in the rotor disk of a steam turbine at a thermal power plant (TPP). Good agreement was confirmed between FCG rates (both macro and microscopic, determined manually or using digital imaging techniques) at high SIF ranges and their noticeable discrepancy at low SIF ranges. Possible reasons for the discrepancy between the micro- and macroscopic FCG rates at low values of the SIF are analyzed. It has also been noted that FS is easier to detect on the fracture surface of degraded steel. Hydrogen embrittlement of steel during operation promotes secondary cracking along the FS, making them easier to detect and quantify. It is shown that the invariable value of the microscopic FCG rate at a low SIF range in the operated steel is lower than observable for the steel in the initial state. Secondary cracking of the operated steel may have contributed to the formation of a typical FS pattern along the entire crack front at a lower FCG rate than in unoperated steel.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3