Development from Alloys to Nanocomposite for an Enhanced Mechanical and Ignition Response in Magnesium

Author:

Tun Khin SandarORCID,Brendan Tan Yan Shen,Tekumalla Sravya,Gupta ManojORCID

Abstract

The current study reports on the evolution of microstructure, variations in compressive properties and the ignition resistance of Mg through compositional variation, using alloying elements and nanoreinforcement. The alloys were designed with the use of a singular alloying element, Ca, and a binary alloying element, Ca+Sc, to develop Mg1Ca (wt.%) and Mg1Ca1Sc (wt.%) alloys. B4C nanoparticles were addedas the reinforcement phase in the Mg1Ca1Sc alloy to create the Mg1Ca1Sc/1.5B4C (wt.%) nanocomposite. The most effective compressive properties and level of ignition resistance was displayed by the developed composite. The grain sizes were significantly reduced in the Mg alloys (81%) and the composite (92%), compared with that of the Mg. Overall, the microstructural features (i.e., grain refinement, the formation of favorable intermetallic compounds, and hard reinforcement particles with an adequate distribution pattern) enhanced both the compressive strength and strain of the alloys and the composite. The ignition resistance was progressively increased from the alloys to the nanocomposite, and a peak ignition temperature of 752 °C was achieved in the composite. When compared with the ignition resistant of Elektron 21 (E21) alloy, which met the Federal Aviation Administration (FAA) requirements, the Mg1Ca1Sc/1.5B4C nanocomposite showed a higher specific yield strength and better ignition resistance, asserting it as a potential candidate material for lightweight engineering applications, including aerospace and defense sectors.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3