Abstract
The current study reports on the evolution of microstructure, variations in compressive properties and the ignition resistance of Mg through compositional variation, using alloying elements and nanoreinforcement. The alloys were designed with the use of a singular alloying element, Ca, and a binary alloying element, Ca+Sc, to develop Mg1Ca (wt.%) and Mg1Ca1Sc (wt.%) alloys. B4C nanoparticles were addedas the reinforcement phase in the Mg1Ca1Sc alloy to create the Mg1Ca1Sc/1.5B4C (wt.%) nanocomposite. The most effective compressive properties and level of ignition resistance was displayed by the developed composite. The grain sizes were significantly reduced in the Mg alloys (81%) and the composite (92%), compared with that of the Mg. Overall, the microstructural features (i.e., grain refinement, the formation of favorable intermetallic compounds, and hard reinforcement particles with an adequate distribution pattern) enhanced both the compressive strength and strain of the alloys and the composite. The ignition resistance was progressively increased from the alloys to the nanocomposite, and a peak ignition temperature of 752 °C was achieved in the composite. When compared with the ignition resistant of Elektron 21 (E21) alloy, which met the Federal Aviation Administration (FAA) requirements, the Mg1Ca1Sc/1.5B4C nanocomposite showed a higher specific yield strength and better ignition resistance, asserting it as a potential candidate material for lightweight engineering applications, including aerospace and defense sectors.
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献