Application of an Artificial Neural Network to Develop Fracture Toughness Predictor of Ferritic Steels Based on Tensile Test Results

Author:

Ishihara Kenichi,Kitagawa Hayato,Takagishi Yoichi,Meshii ToshiyukiORCID

Abstract

Analyzing the structural integrity of ferritic steel structures subjected to large temperature variations requires the collection of the fracture toughness (KJc) of ferritic steels in the ductile-to-brittle transition region. Consequently, predicting KJc from minimal testing has been of interest for a long time. In this study, a Windows-ready KJc predictor based on tensile properties (specifically, yield stress σYSRT and tensile strength σBRT at room temperature (RT) and σYS at KJc prediction temperature) was developed by applying an artificial neural network (ANN) to 531 KJc data points. If the σYS temperature dependence can be adequately described using the Zerilli–Armstrong σYS master curve (MC), the necessary data for KJc prediction are reduced to σYSRT and σBRT. The developed KJc predictor successfully predicted KJc under arbitrary conditions. Compared with the existing ASTM E1921 KJc MC, the developed KJc predictor was especially effective in cases where σB/σYS of the material was larger than that of RPV steel.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3