Improvement in the Resistance to Wear of Work-Rolls Used in Finishing Stands of the Hot Strip Mills

Author:

Cofiño-Villar Alberto,Alvarez-Antolin FlorentinoORCID,Alvarez-Perez Carlos Hugo

Abstract

Work-rolls manufactured through the Indefinite Chill Double Poured (ICDP) method present an exterior work layer manufactured in a martensitic white cast iron alloyed with 4.5 %Ni, 1.7 %Cr, and 0.7 %Nb (wt.%). In its microstructure, there are abundant carbides of the type M3C and MC, which give high resistance to wear, and graphite particles which improve the service behaviour of the rolls against thermal cycling. The core of the rolls is manufactured in grey cast iron of pearlitic matrix and spheroidal graphite. These work-rolls are used in the finishing stands in Hot Strip Mills for rolling slabs proceeding from continuous casting at 1200 °C. Through the application of a Design of Experiments (DoE), an attempt has been made to identify those manufacturing factors which have a significant effect on resistance to wear of these rolls and to find an optimal combination of levels of these factors which allow for improvement in resistance to wear. To increase resistance to wear, it is recommended to situate, simultaneously, the liquidus temperature and the percentage of Si in the respective ranges of 1250–1255 °C and 1.1–1.15 (wt.%). Higher liquidus temperatures favour the presence of the pro-eutectic constituent rather than the eutectic constituent. The outer zone of the work layer, in contact with the metal sheet, which is being rolled, does not show the graphitising effect of Si (0.8–1.15 wt.%). On the contrary, it confirms the hardening effect of the Si in solid solution of the ferrite. The addition of 0.02% of Mg (wt.%) and the inoculation of 6 kg/T of FeB tend to eliminate the graphitising effect of the Si, thus favouring that the undissolved carbon in the austenite is found to form carbides in contrast to the majority formation of graphite.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3