Abstract
Metallic materials produce various structural defects in the radiation environment, resulting in serious degradation of material properties. An important way to improve the radiation-resistant ability of materials is to give the microstructure of materials a self-healing ability, to eliminate the structural defects. The research and development of new radiation-resistant materials with excellent self-healing ability, based on defects control, is one of the hot topics in materials science. Compared with conventional coarse-grained materials, nanocrystalline metals with a high density of grain boundary (GB) show a higher ability to resist radiation damage. However, the mechanism of GB’s absorption of structural defects under radiation is still unclear, and how to take advantage of the GB properties to improve the radiation resistance of metallic materials remains to be further investigated. In recent decades, atomistic simulation has been widely used to study the radiation responses of different metals and their underlying mechanisms. This paper briefly reviews the progress in studying radiation resistance mechanisms of nanocrystalline metals by employing computational simulation at the atomic scale.
Funder
Ministry of Science and Technology
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献