Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity

Author:

El-Tawil Asmaa A.,Björkman Bo,Lundgren Maria,Robles Astrid,Sundqvist Ökvist Lena

Abstract

Coke corresponds to 2/3–3/4 of the reducing agents in BF, and by the partial replacement of coking coals with 5–10% of bio-coal, the fossil CO2 emissions from the BF can be lowered by ~4–8%. Coking coal blends with 5% and 10% additions of bio-coals (pre-treated biomass) of different origins and pre-treatment degrees were carbonized at laboratory scale and with a 5% bio-coal addition at technical scale, aiming to understand the impact on the bio-coal properties (ash amount and composition, volatile matter content) and the addition of bio-coke reactivity. A thermogravimetric analyzer (TGA) connected to a quadrupole mass spectroscope monitored the residual mass and off-gases during carbonization. To explore the effect of bio-coal addition on plasticity, optical dilatometer tests were conducted for coking coal blends with 5% and 10% bio-coal addition. The plasticity was lowered with increasing bio-coal addition, but pyrolyzed biomass had a less negative effect on the plasticity compared to torrefied biomasses with a high content of oxygen. The temperature for starting the gasification of coke was in general lowered to a greater extent for bio-cokes produced from coking coal blends containing bio-coals with higher contents of catalyzing oxides. There was no significant difference in the properties of laboratory and technical scale produced coke, in terms of reactivity as measured by TGA. Bio-coke produced with 5% of high temperature torrefied pelletized biomass showed a similar coke strength as reference coke after reaction.

Funder

Swedish Research Council for Sustainable Development

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference49 articles.

1. Modern Blast Furnace Ironmaking: An Introduction;Geerdes,2015

2. Towards More Sustainable Ironmaking—An Analysis of Energy Wood Availability in Finland and the Economics of Charcoal Production

3. WorldSteel Associationhttps://www.worldsteel.org/publications/bookshop/product-details~Steel-s-contribution-to-a-low-carbon-future--update-version-coming-shortly-~PRODUCT~contribution-low-carbon-pp~.html

4. WOODCHAR AS A SUSTAINABLE REDUCTANT FOR IRONMAKING IN THE 21ST CENTURY

5. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3