Pressure-Assisted Development and Characterization of Al-Fe Interface for Bimetallic Composite Castings: An Experimental and Statistical Investigation for a Low-Pressure Regime

Author:

Rashid TayyibaORCID,Qaiser Saleem MuhammadORCID,Ahmad Mufti Nadeem,Asif Noman,Ishfaq M. Kashif,Naqvi Maham

Abstract

A review of the available literature indicates that the development of metal-reinforced castings present intriguing prospects but carry inherent challenges owing to differences in thermal coefficients, chemical affinities, diffusion issues and the varying nature of intermetallic compounds. It is supported that pressure application during solidification may favorably influence the dynamics of the aforementioned issues; nevertheless, not only certain limitations have been cited, but also some pressure and process regimes have not yet been investigated and optimized. This work employs the pressure-assisted approach for bimetallic steel-reinforced aluminum composite castings at a low-pressure regime and thoroughly investigates the role of three process parameters, namely pouring temperature (800–900 °C), pressure (10–20 bars) and holding time (10–20 s), for producing sound interfaces. The Taguchi L9 orthogonal array has been employed as the Design of the Experiment, while dominant factors have been determined via analysis of variance and the grey relational analysis multi-objective optimization technique. Supplementary analysis through optical micrographs, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) has been utilized to quantify interfacial layer thicknesses and to study microstructural and compositional aspects of the interface. Nano-indentation tests under static and dynamic loading have also been performed for mechanical strength characterization. It has been found that uniform interfaces with verifiable diffusion are obtainable, with the pouring temperature being the most influential parameter (percentage contribution 92.84%) in this pressure regime. The experiments performed at optimum conditions of pouring temperature, applied pressure and holding time produced a ~328% thicker interface layer, 19.42% better nano-hardness and a 19.10% improved cooling rate as compared to the minimum input values of the said parameters.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3