Abstract
The effects of surface softening on fatigue behavior of AISI 316L stainless steel were investigated. Using cold-rolling and electromagnetic induction heating treatment, a gradient structure was fabricated on AISI 316L stainless steel within which the grain size decreased exponentially from micrometers to nanometers to mimic the surface softening. Stress-controlled fatigue tests were applied to both the gradient and homogeneous structures. Compared with the homogeneous sample, surface softening had no evident effect on fatigue behavior when the stress amplitude was greater than 400 MPa, but significantly deteriorated the fatigue behavior at stress amplitude ≤400 MPa. At high-stress amplitude, fatigue behavior is dominated by crack propagation. When the stress amplitude is lowered, strength reduction and stress concentration caused by surface softening accelerate crack initiation and propagation, resulting in an inferior fatigue behavior.
Funder
National Nature Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献