Meta-Control in Pigeons (Columba livia) and the Role of the Commissura Anterior

Author:

Ünver Emre,Xiao Qian,Güntürkün Onur

Abstract

Meta-control describes an interhemispheric response conflict that results from the perception of stimuli that elicit a different reaction in each hemisphere. The dominant hemisphere for the perceived stimulus class often wins this competition. There is evidence from pigeons that meta-control results from interhemispheric response conflicts that prolong reaction time when the animal is confronted with conflicting information. However, recent evidence in pigeons also makes it likely that the dominant hemisphere can slow down the subdominant hemisphere, such that meta-control could instead result from the interhemispheric speed differences. Since both explanations make different predictions for the effect of commissurotomy, we tested pigeons in a meta-control task both before and after transection of the commissura anterior. This fiber pathway is the largest pallial commissura of the avian brain. The results revealed a transient phase in which meta-control possibly resulted from interhemispheric response conflicts. In subsequent sessions and after commissurotomy, however, the results suggest interhemispheric speed differences as a basis for meta-control. Furthermore, they reveal that meta-control is modified by interhemispheric transmission via the commissura anterior, although it does not seem to depend on it.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unihemispheric evidence accumulation in pigeons.;Journal of Experimental Psychology: Animal Learning and Cognition;2021-07

2. The commissura anterior compensates asymmetries of visual representation in pigeons;Laterality;2021-02-23

3. Pigeons show how meta-control enables decision-making in an ambiguous world;Scientific Reports;2021-02-15

4. Brain Lateralization: A Comparative Perspective;Physiological Reviews;2020-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3