Algebraic Construction of a Strongly Consistent, Permutationally Symmetric and Conservative Difference Scheme for 3D Steady Stokes Flow

Author:

Zhang Xiaojing,Gerdt VladimirORCID,Blinkov Yury

Abstract

By using symbolic algebraic computation, we construct a strongly-consistent second-order finite difference scheme for steady three-dimensional Stokes flow and a Cartesian solution grid. The scheme has the second order of accuracy and incorporates the pressure Poisson equation. This equation is the integrability condition for the discrete momentum and continuity equations. Our algebraic approach to the construction of difference schemes suggested by the second and the third authors combines the finite volume method, numerical integration, and difference elimination. We make use of the techniques of the differential and difference Janet/Gröbner bases for performing related computations. To prove the strong consistency of the generated scheme, we use these bases to correlate the differential ideal generated by the polynomials in the Stokes equations with the difference ideal generated by the polynomials in the constructed difference scheme. As this takes place, our difference scheme is conservative and inherits permutation symmetry of the differential Stokes flow. For the obtained scheme, we compute the modified differential system and use it to analyze the scheme’s accuracy.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference20 articles.

1. A Strongly Consistent Finite Difference Scheme for Steady Stokes Flow and its Modified Equations;Blinkov,2018

2. Theoretical Hydrodynamics;Milne-Tompson,1968

3. Viscous Incompressible Flow for Low Reynolds Numbers, Advances in Boundary Elements;Kohr,2004

4. Physics-compatible numerical methods

5. Finite Difference Schemes and Partial Differential Equations;Strikwerda,2004

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3