Author:
Cao Liying,Shi Pei-Jian,Li Lin,Chen Guifen
Abstract
Biological growth is driven by numerous functions, such as hormones and mineral nutrients, and is also involved in various ecological processes. Therefore, it is necessary to accurately capture the growth trajectory of various species in ecosystems. A new sigmoidal growth (NSG) model is presented here for describing the growth of animals and plants when the assumption is that the growth rate curve is asymmetric. The NSG model was compared with four classic sigmoidal growth models, including the logistic equation, Richards, Gompertz, and ontogenetic growth models. Results indicated that all models fit well with the empirical growth data of 12 species, except the ontogenetic growth model, which only captures the growth of animals. The estimated maximum asymptotic biomass wmax of plants from the ontogenetic growth model was not reliable. The experiment result shows that the NSG model can more precisely estimate the value and time of reaching maximum biomass when growth rate becomes close to zero near the end of growth. The NSG model contains three other parameters besides the value and time of reaching maximum biomass, and thereby, it can be difficult to assign initial values for parameterization using local optimization methods (e.g., using Gauss–Newton or Levenberg–Marquardt methods). We demonstrate the use of a differential evolution algorithm for resolving this issue efficiently. As such, the NSG model can be applied to describing the growth patterns of a variety of species and estimating the value and time of achieving maximum biomass simultaneously.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献