Identification and Classification of Maize Drought Stress Using Deep Convolutional Neural Network

Author:

An Jiangyong,Li WanyiORCID,Li Maosong,Cui Sanrong,Yue Huanran

Abstract

Drought stress seriously affects crop growth, development, and grain production. Existing machine learning methods have achieved great progress in drought stress detection and diagnosis. However, such methods are based on a hand-crafted feature extraction process, and the accuracy has much room to improve. In this paper, we propose the use of a deep convolutional neural network (DCNN) to identify and classify maize drought stress. Field drought stress experiments were conducted in 2014. The experiment was divided into three treatments: optimum moisture, light drought, and moderate drought stress. Maize images were obtained every two hours throughout the whole day by digital cameras. In order to compare the accuracy of DCNN, a comparative experiment was conducted using traditional machine learning on the same dataset. The experimental results demonstrated an impressive performance of the proposed method. For the total dataset, the accuracy of the identification and classification of drought stress was 98.14% and 95.95%, respectively. High accuracy was also achieved on the sub-datasets of the seedling and jointing stages. The identification and classification accuracy levels of the color images were higher than those of the gray images. Furthermore, the comparison experiments on the same dataset demonstrated that DCNN achieved a better performance than the traditional machine learning method (Gradient Boosting Decision Tree GBDT). Overall, our proposed deep learning-based approach is a very promising method for field maize drought identification and classification based on digital images.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3