Numerical Research on Energy Evolution in Granite under Different Confining Pressures Using Otsu’s Digital Image Processing and PFC2D

Author:

Zhang Yubao,Zhao Tongbin,Yin Yanchun,Tan Yunliang,Qiu YueORCID

Abstract

Research on energy accumulation and releasing in the rock plays a key role on revealing its failure mechanism. This paper establishes a microscopic structure model of granite using Otsu digital image processing (DIP) technology and particle flow code software (PFC2D). A series of numerical compression tests under different confining pressures were conducted to investigate the macro and micro characteristics of energy evolution in granite. The results showed that the energy evolution of granite is divided into three stages: stable accumulation, slow dissipation, and rapid release. With increasing confining pressure, the strain energy accumulation ratio decreased exponentially and the peak value of strain energy increased linearly. It was found that the energy accumulation speed in the pre-peak stage increased as a linear function, while the energy release speed in the post-peak stage decreased as an exponential function. In addition, the feldspar is the main microstructure which played a major part in accumulating energy in granite. However, the unit mineral energy of mica particles was bigger than that of feldspar and quartz. When subjected to increasing confining pressure, the feldspar’s total energy growth rate was fastest. Meanwhile, the mica’s unit energy growth rate was fastest.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3