Cooperative and Delay Minimization Routing Schemes for Dense UnderwaterWireless Sensor Networks

Author:

Ullah Ubaid,Khan Anwar,Altowaijri Saleh M.,Ali Ihsan,Rahman Atiq UrORCID,Kumar V Vijay,Ali Munsif,Mahmood Hasan

Abstract

Symmetry in nodes operation in underwater wireless sensor networks (WSNs) is crucial sothat nodes consume their energy in a balanced fashion. This prevents rapid death of nodes close towater surface and enhances network life span. Symmetry can be achieved by minimizing delay andensuring reliable packets delivery to sea surface. It is because delay minimization and reliability arevery important in underwaterWSNs. Particularly, in dense underworks, packets reliability is of seriousconcernwhen a large number of nodes advance packets. The packets collide and are lost. This inefficientlyconsumes energy and introduces extra delay as the lost packets are usually retransmitted. This is furtherworsened by adaptation of long routes by packets as the network size grows, as this increases the collisionprobability of packets. To cope with these issues, two routing schemes are designed for dense underwaterWSNs in this paper: delay minimization routing (DMR) and cooperative delay minimization routing(CoDMR). In the DMR scheme, the entire network is divided into four equal regions. The minor sinknodes are placed at center of each region, one in each of the four regions. Unlike the conventionalapproach, the placement of minor sink nodes in the network involves timer based operation and isindependent of the geographical knowledge of the position of every minor sink. All nodes havingphysical distance from sink lower than the communication range are able to broadcast packets directlyto the minor sink nodes, otherwise multi-hopping is used. Placement of the minor sinks in the fourregions of the network avoids packets delivery to water surface through long distancemulti-hopping,which minimizes delay and balances energy utilization. However, DMR is vulnerable to informationreliability due to single path routing. For reliability, CoDMR scheme is designed that adds reliabilityto DMR using cooperative routing. In CoDMR, a node having physical distance from the sink greaterthan its communication range, sends the information packets by utilizing cooperation with a singlerelay node. The destination and the relay nodes are chosen by considering the lowest physical distancewith respect to the desired minor sink node. The received packets at the destination node are merged byfixed ratio combining as a diversity technique. The physical distance computation is independent of thegeographical knowledge of nodes, unlike the geographical routing protocols. This makes the proposedschemes computationally efficient. Simulation shows that DMR and CoDMR algorithms outperformthe counterpart algorithms in terms of total energy cost, energy balancing, packet delivery ratio (PDR),latency, energy left in the battery and nodes depleted of battery power.

Funder

Higher Education Commision, Pakistan

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3