Analysis of Models to Predict Mechanical Properties of High-Performance and Ultra-High-Performance Concrete Using Machine Learning

Author:

Hematibahar Mohammad1ORCID,Kharun Makhmud1ORCID,Beskopylny Alexey N.2ORCID,Stel’makh Sergey A.3ORCID,Shcherban’ Evgenii M.4ORCID,Razveeva Irina3

Affiliation:

1. Department of Reinforced Concrete and Stone Structures, Moscow State University of Civil Engineering, 26 Yaroslavskoye Highway, 129337 Moscow, Russia

2. Department of Transport Systems, Faculty of Roads and Transport Systems, Don State Technical University, 344003 Rostov-on-Don, Russia

3. Department of Unique Buildings and Constructions Engineering, Don State Technical University, 344003 Rostov-on-Don, Russia

4. Department of Engineering Geometry and Computer Graphics, Don State Technical University, 344003 Rostov-on-Don, Russia

Abstract

High-Performance Concrete (HPC) and Ultra-High-Performance Concrete (UHPC) have many applications in civil engineering industries. These two types of concrete have as many similarities as they have differences with each other, such as the mix design and additive powders like silica fume, metakaolin, and various fibers, however, the optimal percentages of the mixture design properties of each element of these concretes are completely different. This study investigated the differences and similarities between these two types of concrete to find better mechanical behavior through mixture design and parameters of each concrete. In addition, this paper studied the correlation matrix through the machine learning method to predict the mechanical properties and find the relationship between the concrete mix design elements and the mechanical properties. In this way, Linear, Ridge, Lasso, Random Forest, K-Nearest Neighbors (KNN), Decision tree, and Partial least squares (PLS) regressions have been chosen to find the best regression types. To find the accuracy, the coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error (RMSE) were selected. Finally, PLS, Linear, and Lasso regressions had better results than other regressions, with R2 greater than 93%, 92%, and 92%, respectively. In general, the present study shows that HPC and UHPC have different mix designs and mechanical properties. In addition, PLS, Linear, and Lasso regressions are the best regressions for predicting mechanical properties.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3