Modeling the Circular Economy Processes at the EU Level Using an Evaluation Algorithm Based on Shannon Entropy

Author:

Busu Cristian,Busu MihailORCID

Abstract

In this paper we propose a methodology to study circular economy processes based on mathematical modelling. In open-ended systems, waste could be converted back to recycling, transforming the economy from linear to circular. The concept of entropy and the second law of thermodynamics give the argument for a scale reduction of material circulation. As humans extract more and more energy and matter for the economy, the degree of entropy is likely to increase. Based on the findings of economic studies on the implications of industrialization in the case of growing economies, this study aims at evaluating circular economy processes at the European Union (EU) level using a Shannon-Entropy-based algorithm. An entropy-based analysis was conducted for the 28 European Union countries during the time frame 2007–2016. The modelling process consists of constructing a composite indicator which is composed of a weighted sum of all indicators developed by an algorithm based on Shannon Entropy. The weights assigned to each indicator in our analysis measure the significance of each indicator involved in the development of the composite indicator. The results are similar to the international rakings, consolidating and confirming the accuracy and reliability of this approach.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3