Production Process Optimization of Metal Mines Considering Economic Benefit and Resource Efficiency Using an NSGA-II Model

Author:

Wang Xunhong,Gu Xiaowei,Liu ZaobaoORCID,Wang Qing,Xu Xiaochuan,Zheng Minggui

Abstract

The optimization of the production process of metal mines has been traditionally driven only by economic benefits while ignoring resource efficiency. However, it has become increasingly aware of the importance of resource efficiency since mineral resource reserves continue to decrease while the demand continues to grow. To better utilize the mineral resources for sustainable development, this paper proposes a multi-objective optimization model of the production process of metal mines considering both economic benefits and resource efficiency. Specifically, the goals of the proposed model are to maximize the profit and resource utilization rate. Then, the fast and elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is used to optimize the multi-objective optimization model. The proposed model has been applied to the optimization of the production process of a stage in the Huogeqi Copper Mine. The optimization results provide a set of Pareto-optimal solutions that can meet varying needs of decision makers. Moreover, compared with those of the current production indicators, the profit and resource utilization rate of some points in the optimization results can increase respectively by 2.99% and 2.64%. Additionally, the effects of the decision variables (geological cut-off grade, minimum industrial grade and loss ratio) on objective functions (profit and resource utilization rate) were discussed using variance analysis. The sensitivities of the Pareto-optimal solutions to the unit copper concentrate price were studied. The results show that the Pareto-optimal solutions at higher profits (with lower resource utilization rates) are more sensitive to the unit copper concentrate prices than those obtained in regions with lower profits.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3