On the Convergence Rate of Quasi-Newton Methods on Strongly Convex Functions with Lipschitz Gradient

Author:

Krutikov Vladimir12ORCID,Tovbis Elena3ORCID,Stanimirović Predrag14ORCID,Kazakovtsev Lev13ORCID

Affiliation:

1. Laboratory “Hybrid Methods of Modeling and Optimization in Complex Systems”, Siberian Federal University, 79 Svobodny Prospekt, Krasnoyarsk 660041, Russia

2. Department of Applied Mathematics, Kemerovo State University, 6 Krasnaya Street, Kemerovo 650043, Russia

3. Institute of Informatics and Telecommunications, Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarskii Rabochii Prospekt, Krasnoyarsk 660037, Russia

4. Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia

Abstract

The main results of the study of the convergence rate of quasi-Newton minimization methods were obtained under the assumption that the method operates in the region of the extremum of the function, where there is a stable quadratic representation of the function. Methods based on the quadratic model of the function in the extremum area show significant advantages over classical gradient methods. When solving a specific problem using the quasi-Newton method, a huge number of iterations occur outside the extremum area, unless there is a stable quadratic approximation of the function. In this paper, we study the convergence rate of quasi-Newton-type methods on strongly convex functions with a Lipschitz gradient, without using local quadratic approximations of a function based on the properties of its Hessian. We proved that quasi-Newton methods converge on strongly convex functions with a Lipschitz gradient with the rate of a geometric progression, while the estimate of the convergence rate improves with the increasing number of iterations, which reflects the fact that the learning (adaptation) effect accumulates as the method operates. Another important fact discovered during the theoretical study is the ability of quasi-Newton methods to eliminate the background that slows down the convergence rate. This elimination is achieved through a certain linear transformation that normalizes the elongation of function level surfaces in different directions. All studies were carried out without any assumptions regarding the matrix of second derivatives of the function being minimized.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3