Rewarded Meta-Pruning: Meta Learning with Rewards for Channel Pruning

Author:

Shibu Athul1,Kumar Abhishek1ORCID,Jung Heechul1ORCID,Lee Dong-Gyu1ORCID

Affiliation:

1. Department of Artificial Intelligence, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea

Abstract

Convolutional neural networks (CNNs) have gained recognition for their remarkable performance across various tasks. However, the sheer number of parameters and the computational demands pose challenges, particularly on edge devices with limited processing power. In response to these challenges, this paper presents a novel approach aimed at enhancing the efficiency of deep learning models. Our method introduces the concept of accuracy and efficiency coefficients, offering a fine-grained control mechanism to balance the trade-off between network accuracy and computational efficiency. At our core is the Rewarded Meta-Pruning algorithm, guiding neural network training to generate pruned model weight configurations. The selection of this pruned model is based on approximations of the final model’s parameters, and it is precisely controlled through a reward function. This reward function empowers us to tailor the optimization process, leading to more effective fine-tuning and improved model performance. Extensive experiments and evaluations underscore the superiority of our proposed method when compared to state-of-the-art techniques. We conducted rigorous pruning experiments on well-established architectures such as ResNet-50, MobileNetV1, and MobileNetV2. The results not only validate the efficacy of our approach but also highlight its potential to significantly advance the field of model compression and deployment on resource-constrained edge devices.

Funder

Korean Government

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3