The Well-Posed Identification of the Interface Heat Transfer Coefficient Using an Inverse Heat Conduction Model

Author:

Pyatkov Sergey12ORCID,Potapkov Alexey1

Affiliation:

1. Engineering School of Digital Technologies, Yugra State University, Chekhov St. 16, 628007 Khanty-Mansiysk, Russia

2. Academy of Sciences of the Republic of Sakha (Yakutia), 33 Lenin Ave., 677007 Yakutsk, Russia

Abstract

In this study, the inverse problems of recovering the heat transfer coefficient at the interface of integral measurements are considered. The heat transfer coefficient occurs in the transmission conditions of an imperfect contact type. This is representable as a finite part of the Fourier series with time-dependent coefficients. The additional measurements are integrals of a solution multiplied by some weights. The existence and uniqueness of solutions in Sobolev classes are proven and the conditions on the data are sharp. These conditions include smoothness and consistency conditions on the data and additional conditions on the kernels of the integral operators used in the additional measurements. The proof relies on a priori bounds and the contraction mapping principle. The existence and uniqueness theorem is local in terms of time.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Ladyzhenskaya, O.A., Solonnikov, V.A., and Uraltseva, N.N. (1968). Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society.

2. Animasaun, I.L., Shah, N.A., Wakif, A., Mahanthesh, B., Ramachandran, S., and Koriko, O.K. (2022). Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization, Chapman and Hall/CRC.

3. Alifanov, O.M., Artyukhin, E.A., and Nenarokomov, A.V. (2009). Inverse Problems in the Study of Complex Heat Transfer, Janus-K.

4. Ozisik, M.N., and Orlande, H.R.B. (2000). Inverse Heat Transfer, Taylor & Francis.

5. Baehr, H.D., and Stephan, K. (2006). Heat and Mass Transfer, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3