Bifurcation Behavior and Hybrid Controller Design of a 2D Lotka–Volterra Commensal Symbiosis System Accompanying Delay

Author:

Cui Qingyi1,Xu Changjin2ORCID,Ou Wei1,Pang Yicheng1,Liu Zixin1,Li Peiluan3ORCID,Yao Lingyun4

Affiliation:

1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China

2. Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550025, China

3. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China

4. Library, Guizhou University of Finance and Economics, Guiyang 550025, China

Abstract

All the time, differential dynamical models with delay has witness a tremendous application value in characterizing the internal law among diverse biological populations in biology. In the current article, on the basis of the previous publications, we formulate a new Lotka–Volterra commensal symbiosis system accompanying delay. Utilizing fixed point theorem, inequality tactics and an appropriate function, we gain the sufficient criteria on existence and uniqueness, non-negativeness and boundedness of the solution to the formulated delayed Lotka–Volterra commensal symbiosis system. Making use of stability and bifurcation theory of delayed differential equation, we focus on the emergence of bifurcation behavior and stability nature of the formulated delayed Lotka–Volterra commensal symbiosis system. A new delay-independent stability and bifurcation conditions on the model are presented. By constructing a positive definite function, we explore the global stability. By constructing two diverse hybrid delayed feedback controllers, we can adjusted the domain of stability and time of appearance of Hopf bifurcation of the delayed Lotka–Volterra commensal symbiosis system. The effect of time delay on the domain of stability and time of appearance of Hopf bifurcation of the model is given. Matlab experiment diagrams are provided to sustain the acquired key outcomes.

Funder

National Natural Science Foundation of China

Guizhou Province

scientific research projects in Henan province

Henan Province of China

Colleges and Universities of Henan Province of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3